
Blockchain Foundations NTUA, Sping 2026

Problem Set #5 ∗

Soft Deadline: TBD
Final Deadline: TBD

1 Block and Transaction Validation (contd.)

If you have not already implemented the following yet, do them now:

1. Ensure that a transaction does not have multiple inputs that have the same outpoint.
(It should be clear that this is required for a valid transaction.)

2. Ensure if present that the note and miner fields in a block are ASCII-printable strings
up to 128 characters long each. ASCII printable characters are those with decimal values
32 up to 126. If this is not the case, send back an INVALID_FORMAT error.

3. Ensure if present that the studentids field is an array with at most 10 ASCII-printable
strings each containing up to 128 characters. If the studentids field is present but does
not follow these constraints, send back an INVALID_FORMAT error.

2 Mempool UTXO

In this exercise, you will maintain a mempool and update it based on new transactions and
blocks.

1. Implement a data structure for the mempool. You should maintain a list of transaction
ids in the mempool and also maintain the required state that allows you to update your
mempool when you receive new transactions and blocks.

2. Initialize the mempool state by applying the transactions in your longest chain. (On
booting, you can first determine your longest chain using the responses to your getchaintip
requests.)

3. On booting, also send a getmempool message to ask your peers for their mempools.

4. On receiving a mempool message, request from peers the transactions corresponding to
the txids in the mempool message using getobject messages.
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5. Listen for transactions as they are gossiped on the network. If a new transaction is valid
with respect to your mempool state, add it to your mempool and update the mempool
state. If a transaction cannot be added to your mempool due to an an already spent
transaction input, send back an INVALID_TX_OUTPOINT error.

6. When a new block arrives that is added to your longest chain, update your mempool by
removing transactions that are already included in the block, or are now invalid. Update
your mempool state.

7. Deal with mempool updates when your longest chain reorgs. Refer to class notes for the
steps involved.

3 Sample Test Cases

IMPORTANT: Make sure that your node is running at all times! Therefore, make
sure that there are no bugs that crash your node. If our automatic grading script
can not connect to your node, you will not receive any credit. Taking enough time
to test your node will help you ensure this.
Below is a (non-exhaustive) list of test cases that your node will be required to pass. We will
also use these test cases to grade your submission. Consider two nodes Grader 1 and Grader
2.

0. Reset your transactions/mempool database before submitting for grading. This is so
that transactions that your node might have earlier considered valid but are actually
invalid are removed from the database.

1. Grader 1 sends one of the following invalid objects in an object message. Grader
1 must receive an INVALID_FORMAT error message, and Grader 2 must not receive an
ihaveobject message with the corresponding object id.

a) A transaction with two inputs that share an outpoint

b) A block with more than 128 characters in the note field

2. Grader 1 sends a valid transaction with two inputs (spending outputs with different
public keys). Grader 2 must receive the transaction when it sends a getobject with the
corresponding transaction id.

3. Grader 1 sends a getmempool and getchaintip message to obtain your mempool and
longest chain.

a) The mempool must be valid with respect to the UTXO state after the chain.

b) Grader 1 sends a transaction that is valid with respect to the mempool state. Grader
1 again sends a getmempool message and this time the mempool should contain the
sent transaction.
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c) Grader 1 sends a transaction that is invalid with respect to the mempool state.
Grader 1 again sends a getmempool message and this time the mempool should not
contain the sent transaction.

d) Grader 1 sends a coinbase transaction. Grader 1 again sends a getmempool message
and this time the mempool should not contain the sent transaction.

e) Grader 1 will send a longer chain (causing a reorg) and then send a getmempool

message. The received mempool must be consistent with the new chain:

i. It must not contain any transactions that are already in the new chain or are
invalid with respect to the new chain UTXO state.

ii. It must also contain transactions that were in the old chain but are not in the
new chain and valid with respect to the new chain UTXO state.
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