Blockchain Foundations NTUA, Spring 2026

Practice Theory Exercise 3 Solutions

Problem 1

In class, we studied binary Merkle trees, but Merkle trees can have higher dimensions. A d-
dimensional Merkle tree is a complete tree in which every non-leaf node has exactly d children.
The value of a leaf is the hash of its contents, as in a binary Merkle tree. The value of an internal
node is the hash of the concatenation of its children’s values. For example, in a ternary Merkle
tree constructed using the hash function H, an internal node with value v which has children with
values vy, v, and v3 will take the value v = H(vy || ve || v3).

Consider a ternary tree constructed using blake2s, a hash function with an output of k = 256
bits which has 37 leaves. Calculate the proof size, in bytes, for this Merkle tree. You can assume
the verifier already has the Merkle tree root and has received the claimed contents and index of
the leaf node in question, so you do not need to include these in your proof size calculation.

The proof will have to contain all the siblings, at every level, of the path connecting the
leaf to the root. Since the tree is ternary, there are two siblings at every level. The number
of levels is log4(37) = 7. As we are using blake2s, each node contains a value k = 256
bits long. The position of each child along the path can be determined by the index of
the leaf, which is already known to the verifier. Therefore, the total proof size will be
2 X 7 x 256 = 3584 bits = 448 bytes long.

Problem 2

In class, we studied Merkle trees where the leaves are relatively few. Many modern blockchain
applications make use of sparse Merkle trees. A sparse Merkle tree is a complete binary Merkle
tree with exactly 2% leaves. Since the tree has an exponential number of leaves, they cannot be
processed by a polynomially bound computer. However, the vast majority of these leaves have
contents set to the empty string, whereas only a polynomial number of leaves have non-empty
contents. This makes computing the root and proofs within these trees efficiently possible.

Consider a sparse Merkle tree with 2% leaves constructed using sha256, a hash function with an
output of kK = 256 in which the first leaf has contents equal to the string hello and value equal to
the hash

2cf24dbabfb0a30e26e83b2acbb9e29e1bl61ebc1fa7425e73043362938b9824.

All the other 226 — 1 leaves of this tree have their contents set to the empty string and their
value is equal to

e3b0c44298fc1c149afbf4c8996£b92427ae41e4649b934cad495991b7852b855.

What is the value of the root of this tree?

We cannot calculate the value of every node individually, since there is an exponential number
of them. Instead, we will approach this problem by calculating the value of the root of a tree
where every leaf is empty. We will do this with trees that have height 1,2,3,...,256. This
can be done efficiently because the value of the root of a tree with height ¢ can be computed
by hashing together the roots of the trees with height ¢ + 1. After this has been done, we
can keep hashing the non-empty value on the left-hand side with values of trees of empty
leaves gradually increasing in height on the right-hand side.

The Python code to do this is depicted below.

import hashlib
kappa = 256

def H(x):
m = hashlib.sha256 ()
m.update (x.encode ('utf-8"'))
return m.hexdigest ()

def sparse_root():
y = H('hello')
tmp = H('')
for _ in range (kappa):
y = H(y + tmp)
tmp = H(tmp + tmp)
return y

print (sparse_root ())

Here is the equivalent code in JavaScript:

const { createHash } = require('crypto');

function H(message) {
const hash = createHash('sha256');
hash.update (message) ;
return hash.digest('hex');

}

let y = H('hello');

let tmp = H('');

for (let i = 0; i < 256; i++) {
y = H(y + tmp);
tmp = H(tmp + tmp);

}

console.log(y);

The final hash computed by the above code is:

7Tbf£9d8451aeda8£9152b4bcc53b0472d09aec4fb627db15d00bdac49204092e.

Problem 3

Consider a bitcoin backbone execution with n = 10, t = 2, ¢ = 1000, k = 256 and T = 2%~ 19,
Numerically calculate the following quantities:

1. The honest advantage 9.

2.
3.

The probability p of a successful query.

The probability f that a round is successful.

. The expectation E[Z,] of the number of successful adversarial queries in a round.

. The expectation E[Z(S)] of the number of successful adversarial queries in a set of consecutive

rounds with |S| = 256.

. Your best lower bound for E[Y;], the expectation of a round being a convergence opportunity.

ot

. From the honest majority equation ¢ < (1 — J)(n — t) we obtain 2 < (1 —§)8. A

N

threshold that captures this is therefore § = 0.7.

p _ ZZN _ 2/{2;’19 _ 2719.
f=1-(1-p) =1 (1 -2719)1000x8 — 0 01514.

E[Z;] = pgt = 0.003815.
E[Z(S)] = |S|E[Z,] = 256 x 0.003815 = 0.9766

EY;] > g(n —)p(1 — p)?"H~1 = 0.015

Problem 4

Consider bitcoin backbone executions with n = 10, t = 2, ¢ = 1000 and a hash function with
Kk = 256 bits. The probability of an execution of interest being typical is at least

1— 2—(62>\f/3+n—30) _

Numerically calculate:

1. The honest advantage 9.

2. Your choice of a secure parametrization for the probability f of a successful round and the
Chernoff error e that respects the balancing equation.

3. The probability of a successful query p.

4. A suitable target 1" to achieve it.

5. A Chernoff interval parameter A that ensures typical executions occur with probability at
least 1 — 27256,

6. The chain growth parameters: The chain growth interval s and the chain velocity 7.
7. The common prefix parameter k.

8. The chain quality parameters: The chunk size ¢ and the chain quality pu.

1. As before, 6 = 0.7.

2. Using e = f = %, we get € = f = 0.11 (we round down to ensure the balancing equation
remains satisfied).

3. Solving f = 1 — (1 — p)?™) for p to obtain p = 1 — (1 — f)/9"=1) we calculate
p = 0.0000146. This can also be calculated by plugging various p in the f expression
and binary searching.

4. Solving p = 21, we obtain T = 2+~ 16,

5. Setting €2\f/3 + k — 30 = 256 and solving for A we obtain \ = 67618.

6. The interval is s = A = 67618 and the minimum velocity is 7 = (1 —¢€)f = (1 —0.11) x
0.11 = 0.0979 blocks per unit of time.

7. The common prefix parameter is k = 2\ f = 2 x 67618 x 0.11 = 14876.

8. The chunk is £ = k = 2\ f = 14876 and the minimum quality is =1 — (1 + g)ﬁ =
= = 0.53809.
1—

c =

We note that the Bitcoin backbone parametrization is quite conservative.

Problem 5

When we implemented the Selfish Mining simulation in class using the Monte Carlo method, we
implicitly assumed that each block is instantly received by the whole network before the next block is
mined. This allowed us to deduce that the probability of the next produced block being adversarial
was % However, when we explored the fan-out attack and formalized the bitcoin backbone model,
we saw that time discretization into rounds leads to situations in which multiple successful queries
can occur in a given round.

Consider a bitcoin backbone execution in the usual synchronous lockstep model. We call a round
adversarially superior if the round contains an adversarially successful query, but is not a successful
round (i.e., there is no honestly successful query). We are interested in the following event E:

An adversarially superior round has occurred strictly prior to the first successful round.

For example, if rounds 1, 2, and 3 contain no successful queries, round 4 contains one adversarially
successful query, round 5 contains no successful queries, and round 6 contains one honestly successful

query, then the event F has occurred. On the contrary, if the rounds 1, 2, and 3 contain no successful

queries, and round 4 contains both an adversarial and an honestly successful query, the event E has

not occurred, because the adversarially superior round was the same as the first successful round.
For simplicity, assume the execution continues for infinite, not just polynomial, duration.

1. Analytically calculate the probability of the event E occurring. Simplify your calculation to
closed form (containing no summations »_).

2. Use Bernoulli’s approximation (1 — z)* &~ 1 — az for large a and small z to simplify your
expression.

3. Find the limit of your probability for p — 0, i.e., successful queries become rarer and rarer.

1. Consider what it takes for the event E to be attained: A particular round ¢ must be
the first adversarially superior round and it must occur prior to any successful round
(recall that a successful round means honestly successful). For the round ¢ to be the
first adversarially superior round, all of the following conditions must hold:

a) All itq adversarial queries in the previous rounds must have failed, each with
probability 1 — p. Otherwise round ¢ would not be the first round in which the
adversary succeeded. This happens with probability (1 — p)i.

b) In order for the adversarial round to occur strictly prior to the first successful
round, each of the i(n — t)q honest queries in the previous and the current round

must have failed, each with probability 1 — p. This happens with probability
(1 _ p)(i—&-l)(n—t)q.

c¢) In order for the i round to be adversarially superior, it must be the case that

at least one adversarial query among the tg in this round succeeded, i.e., not all
tq queries in the round have been unsuccessful. This happens with probability

(1—-(1-p)).

These three conditions are independent, so we can multiply them together to get the
probability that the i*! round has the desired property:

(1= p)™(1 = p)iHD=09(1 — (1 p)*)

The event can occur in rounds with indices ¢ = 0. .. 0o. These alternatives are mutually
exclusive (it’s not possible that this event happens in both round i = 3 and i = 5 — one
of them must be the first), so we can sum them. Overall,

Pr(E] = 3 (1 - p)(1 - p) D1 — (1 - p)')

0

@
Il
Q

(1 —p)at@GD=ta(1 — (1 — p)'a)

.

1=0
_ (1 o (1 - p)tq) Z(l - p)itq+(i+1)(n7t)q
=0

= (1= (1-p))) (1 —pyretn=0e
0

"> (=)

=0
I
—-pm

= (1 (=P -)00
— (- -9 -p 0 (4

~

)

As a second method, this last probability can also be calculated directly using a
different intuition: There’s some round that contains the first successful query (whether
honest or adversarial). We wish to calculate the probability that that round contains
only adversarially successful queries and no honestly successful queries, conditioned on
the event that it is successful:

Pr[E] = Pr[r adversarially superior|r has a successful query]

_ Pr[r adversarially superior and has successful query]

Pr[r has successful query]

(1-(1=p)9)(1 —p)n—9e
1—(1—p)

This is exactly the final expression we derived.

The way we simplified the) was by using the geometric series formula.

As a third method, this last probability can be calculated by noticing that:

Pr[E] = Pr[r adversarial or (r unsuccessful and future round adversarially superior)]
= Pr[r adversarial] + Pr[r unsuccessful and future round adversarially superior]

= Pr[r adversarial] + Pr[r unsuccessful] - Pr[E]

Rearranging this equation:

Pr[r adversarial]

Pr|E| =
gt 1 — Pr[r unsuccessful]

Pr[r adversarial]

Pr[r has a successful query]

Pr[r has a successful adversarial query]Pr[r has no successful honest query]

Pr[r has a successful query]
(1-Q1-pQa-pre
1—(1—p)a

This produces the same expression once more.

Pr[B] ~ (1= (1 - tqp))(1 = (n — #)qp) <1—(11—nqp))

1
=tqp(l — (n —t)qp) —
(I—=(n—1))nqp
t

~(1- (n—t)ap)

Alternatively, if the expression was first simplified before applying Bernouilli:

(1-p) D7 (1 —p)m

PriE] = 1—(1—p)
. (1= (n—t)gp) — (1 — ngp)
1 — (1 —ngp)
_ D
ngp
ot

t t
lim — (1 — (n — t)gp) = —
litgn (L — G —)l =

We deduce that the approximation % we used in our Monte Carlo simulation is “good enough”

if the probability of a successful query is so small that multiple successful queries don’t
appear in the same round. Equivalently, the same effect is also observed if the network
delivers messages with a very small delay, which makes multiple successful queries per round
also unlikely:.

References

Some helpful definitions are provided below. For the full definitions, consult the lecture notes and
the bitcoin backbone paper.

Definition (The Proof-of-Work Inequality).
HB)<T

Definition (Chain Growth (formal)). An execution has chain growth, parametrized the growth
interval s and the velocity 7 if, for any rounds r1, ro with ro > r; 4+ s, and any honest party P, it
holds that |[CL| > |CF| + s7.

Definition (Common Prefix (formal)). An execution has common prefiz, parametrized by k € N,
if for all honest parties P;, P, and for all times rq < r9, it holds that Cﬁl [[—k] < C,];?

Definition (Chain Quality (formal)). An execution has chain quality, parametrized by the chunk
¢ and the quality p if, for all honest parties P and round r, and for any positions ¢ < j in the chain
with j > i + ¢, the ratio of honest to total blocks in CF[i:j] is at least .

Definition (Honest Majority (formal)). An execution is said to satisfy honest majority with honest
advantage § if t < (1 —9)(n —1).

Definition (The Balancing Equation). The balancing equation is given by

3e+3f <9.
One possible configuration is e = f = g.

Definition (Typicality). An execution is called typical if for all sets S of consecutive rounds, with
|S| > A, the random variables X (5), Y'(S), Z(S) are at most an € error within their expectations:

o (1-E[X(S)] < X(S) < (1 +)E[X(S)].
o (1—E[Y(S)] < Y(S) < (1+e)E[Y(S)].
o (1—E[Z(S)] < Z(S) < (1 +)E[Z(S)].

Definition (Chernoff Bound). Consider a set of independent and identically distributed Bernoulli
trials {X;};cp, with E[X;] = p. Consider their Binomial sum X = 7" | X;, and its expectation
= E[X] = np. The probability of X deviating more than € from E[X] is negligible in n. Concretely,

OE[X]] < e~ H/?

)
e K3

P
P

[
[

IN

X<(1-
X > (14 ¢)E[X]]

T
T

v
IN

Chain addressing notation.

e CP: The chain of party P at round r.

|C|: Chain length
Cli]: i*® block in the chain (0-based). The block height is i.

C[—i]: i*® block from the end.

C[0]: Genesis (by convention honest).
C[—1]: The tip.
Cli:j]: Chain chunk from block i (inclusive) to j (exclusive).

C[:j]: Chain chunk from the beginning and up to block j (exclusive).
C[i:]: Chain chunk from block 7 (inclusive) onwards.

C[:—k]: The stable chain.

Variables.

k: The security parameter, and size of the hash function output.
H: The hash, modelled as a random oracle.

n: The number of parties.

t: The number of corrupt parties.

0: The honest advantage.

q: Compute per party per round (number of allowed queries to the random oracle).
T: The mining target.

s: The chain growth interval, in units of time.

7: The chain velocity, in blocks per unit of time.

k: The common prefix parameter, in blocks.

£: The chain chunk size required to ensure quality, in blocks.

: The chain quality as a ratio.

: The probability of a successful query.

- 8

: The probability that a given round is successful.

The Chernoff error.

!

A: The Chernoff interval.

X,: The random variable indicating whether a round was successful.

Y,: The random variable indicating whether a round was a convergence opportunity.
Z,: The random variable counting adversarially successful queries in a round.
X (S): The random variable counting the number of successful rounds among rounds S.

Y (S): The random variable counting the number of convergence opportunities among rounds

S.

Z(S): The random variable counting the number of adversarially successful queries among
rounds S.

10

