
Blockchain Foundations NTUA, Spring 2026

Practice Theory Exercise 1 Solutions

Problem 1

Let H : {0, 1}∗ −→ {0, 1}κ be a collision-resistant hash function and define G(x) = H(H(x)). Use
a reduction to show that G is a collision-resistant hash function.

Proof: For the sake of contradiction, suppose that G weren’t a collision-resistant hash
function. This means that there exists a PPT adversary A for which

Pr[collision-gameG,A(κ) = 1]

is a non-negligible function f(κ). We construct another adversary A′ as follows:

Algorithm 1 Adversary A′ that breaks H.

1: function A′(1κ)
2: x1, x2 ← A(1κ)
3: if H(x1) = H(x2) then
4: return (x1, x2)
5: end if
6: return (H(x1), H(x2))
7: end function

Notice that A wins the collision-resistance game for G iff A′ wins the collision-resistance
game for H. Hence,

Pr[collision-gameH,A′(κ) = 1] = Pr[collision-gameG,A(κ) = 1]

for all κ. Furthermore, A′ is PPT since A is PPT, and the if statement in the algorithm
above guarantees that the two returned values of A′ are distinct. Since A breaks G with
non-negligible probability, A′ will break H with non-negligible probability, contradicting
H’s collision resistance.■

Alternate Proof: For the sake of contradiction, suppose that G weren’t a collision-
resistant hash function. This means that there exists a PPT adversary A for which

Pr[collision-gameG,A(κ) = 1]

is a non-negligible function f(κ). We construct another adversary A′ as follows:

1



Algorithm 2 Adversary A′ that breaks H.

1: function A′(1κ)
2: x1, x2 ← A(1κ)
3: return (H(x1), H(x2))
4: end function

Notice that the probability A′ breaks H is the same as the probability A returns x1 and
x2 that break G and H(x1) ̸= H(x2) (think about why this latter condition is important).
Furthermore, A′ is guaranteed to be PPT since A is PPT.

Let E1 correspond to the event that A outputs x1 and x2 that break G (i.e., G(x1) = G(x2)
and x1 ̸= x2). Let E2 correspond to the event that A outputs x1 and x2 for which
H(x1) ̸= H(x2). Recall that P (E1) = f(κ) is non-negligible and that P (E2) = 1 − negl(κ)
for some negligible function negl because H is collision-resistant.

If we show that Pr[E1 ∩ E2] is non-negligible, then A′ will break the collision resis-
tance of H, completing the contradiction. We have

Pr[E1 ∩ E2] = Pr[E1] + Pr[E2]− Pr[E1 ∪ E2]

≥ Pr[E1] + Pr[E2]− 1

= Pr[E1] + (1− negl(κ))− 1

= f(κ)− negl(κ)

Since the difference between a non-negligible function and negligible function is non-
negligible, we are done.■

Problem 2

Given a collision resistant hash function H : {0, 1}∗ −→ {0, 1}κ, create a hash function G :
{0, 1}∗ −→ {0, 1}κ with the following properties:

1. G is collision resistant.

2. The first two bits of G are predictable (a bit is predictable if it can be successfully “guessed”
with probability 1

2 + non-negligible when the input is chosen uniformly at random).

Write out explicitly what this G function is, then define and prove the above two properties
formally. For the first property, use a reduction.

Define Gκ(x) to be the concatenation of the bits 11 with Hκ−2(x). The first two bits of G
are predictable because they will always be 11 for all κ.

Suppose for the sake of contradiction that G weren’t collision resistant. This means

2



that there exists a PPT adversary A for which

Pr[collision-gameG,A(κ) = 1]

is a non-negligible function f(κ). We construct another PPT adversary A′ as follows:

Algorithm 3 Adversary A′ that breaks H.

1: function A′(1κ)
2: x1, x2 ← A

(
1κ+2

)
3: return (x1, x2)
4: end function

A′ will succeed in breaking Hκ iff A succeeds in breaking Gκ+2 (why?). Hence,

Pr[collision-gameH,A′(κ) = 1] = f(κ+ 2)

Since a horizontal translation of a non-negligible function is non-negligible, A′ breaks the
collision resistance of H, contradiction.■

Problem 3

Construct a correct but insecure signature scheme. Write the full implementation of your signature
scheme in pseudocode. Prove its correctness and insecurity.

The simplest example of a correct but insecure signature scheme is when the Ver function is
defined to always return 1. The choice of Gen and Sig won’t matter. This scheme is correct
trivially by the definition of correctness. To show its insecurity, consider an adversary that
returns any message signature combination without use of the oracle. The probability such
an adversary wins the forgery game will be 1 for all κ which is non-negligible. Here is a
precise implementation of one possible signature scheme:

Algorithm 4 Secret and public key generator Gen.

1: function Gen(1κ)
2: sk ← 1κ

3: pk ← 1κ

4: return (sk, pk)
5: end function

3



Algorithm 5 Signature creator Sig.

1: function Sig(sk,m)
2: return sk
3: end function

Algorithm 6 Signature verifier Ver.

1: function Ver(pk,m, σ)
2: return true
3: end function

Problem 4

5

3 4

6

7

8

9

11

10

15

161

2 12 13 14

Figure 1: The transaction graph of Problem 4.

Consider the complete transaction graph accepted and stored in the database of an honest
node illustrated in Figure 1. The circles represent transactions and the numbers within them are
the txids. The outgoing edges are outputs, and the incoming edges are inputs. For each transaction,
edges appear ordered from top to bottom. For this graph:

1. Identify the coinbase transactions.

2. Identify the double spending transactions. For each double spending transaction, identify the
transaction it is conflicting with.

4



3. Identify the UTXO set.

4. Identify the transactions for which the Weak Conservation Law does not hold.

5. Identify the outputs of transactions that are partially, but not fully, spent.

To identify transactions, use their txids. To identify an output, use outpoint notation. Note that
transaction 6 has four outputs.

1. Coinbase transactions are transactions with no inputs and one or more outputs. They
correspond to transactions 1, 2, 5 in the graph.

2. Honest nodes won’t accept double spends, so there are no double spends in the graph.

3. The UTXO set consists of edges that don’t point to other transactions. In the trans-
action graph, this corresponds to the following outpoint set:

{(9, 0), (14, 0), (15, 0), (16, 0), (8, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1)}

4. Honest nodes will only accept non-coinbase transactions that pass the Weak Conser-
vation Law, so only coinbase transactions will violate it. Hence, we will have the same
answer as in part 1 (i.e., transactions 1, 2, 5).

5. It is not possible to only spend part of a transaction’s output. They are either not
spent (part of UTXO set) or completely spent.

Problem 5

The honest proof-of-work algorithm begins by sampling a uniformly random κ-bit nonce, then iter-
ates for a polynomial number of repetitions while incrementing the nonce. Prove that, if a constant
number of honest parties execute this algorithm a polynomial number of times, the probability that
they query the hash using the same nonce is negligible.

Proof: Suppose that there are m honest parties that each increment the nonce a polynomial
p(κ) times. Let’s compute the probability P that one or more of the honest parties query
overlapping nonces using the Union Bound inequality.

Let Xij be the indicator variable that takes on a value of 1 if parties i and j query
overlapping nonces and is 0 otherwise. Notice that

Pr[Xij = 1] ≤ 2p(κ)

2κ

because regardless of where party i starts, there are at most 2p(κ) possible starting nonces
for party j that will cause an overlap (draw this out to see why!). Hence, by the Union

5



Bound inequality,

P = Pr

⋃
i<j

Xij

 ≤∑
i<j

Pr[Xij = 1] =

(
m

2

)
2p(κ)

2κ
≤ 2m2p(κ)

2κ

P is negligible since it is the ratio of a polynomial and exponential in κ, as desired.■

Alternate Proof: Suppose that there are m honest parties that each increment the
nonce a polynomial p(κ) times. Let’s compute the probability P that none of the honest
parties query overlapping nonces.

Split the range from 0 to 2κ into 2κ

p(κ) intervals of length p(κ). Each time an honest
party picks a starting nonce, at most 3 intervals will be removed from the choices of the
starting nonce of the next honest party. Hence,

P ≥

(
2κ

p(κ)

2κ

p(κ)

)(
2κ

p(κ) − 3

2κ

p(κ)

)(
2κ

p(κ) − 3(2)

2κ

p(κ)

)
· · ·

(
2κ

p(κ) − 3(m− 1)

2κ

p(κ)

)

≥

(
1− 3m

2κ

p(κ)

)m

For sufficiently large κ, Bernoulli’s inequality gives(
1− 3m

2κ

p(κ)

)m

≥ 1− 3m2

2κ

p(κ)

.

As a result,

1− P ≤ 3m2

2κ

p(κ)

=
3m2p(κ)

2κ
.

1− P can now be seen as negligible since it is the ratio of a polynomial and exponential in
κ, as desired.■

Reference

Some helpful definitions are provided below. For the full definitions, consult the lecture notes.

Definition (Collision Resistance). A hash function H : {0, 1}∗ −→ {0, 1}κ is collision resistant if
for all PPT adversaries A,

Pr[collision-gameH,A(κ) = 1] = negl(κ) .

The game is defined in Algorithm 7.

6



Algorithm 7 The collision-finding game for a hash function H.

function collision-gameH,A(κ)
x1, x2 ← A(1κ)
return Hκ(x1) = Hκ(x2) ∧ x1 ̸= x2

end function

Definition (Correct Signature). A signature scheme (Gen, Sig,Ver) is correct if, for all m ∈ {0, 1}∗,
whenever (sk, pk)← Gen(1κ), we have that Ver(pk,m, Sig(sk,m)) = 1.

Definition (Secure Signature). A signature scheme (Gen,Sig,Ver) is secure if for all PPT adver-
saries A,

Pr[existential-forgery-game(Gen,Sig,Ver),A(κ) = 1] = negl(κ) .

The game is defined in Algorithm 8.

Algorithm 8 The existential forgery game for a signature scheme (Gen, Sig, Ver).

1: function existential-forgery-game(Gen,Sig,Ver),A(κ)
2: (pk, sk)← Gen(1κ)
3: M ← ∅
4: function O(m)
5: M ←M ∪ {m}
6: return Sig(sk,m)
7: end function
8: m,σ ← AO(pk)
9: return Ver(pk, σ,m) ∧m ̸∈M

10: end function

Algorithm 9 The proof-of-work algorithm.

1: function PoWH,T

2: ctr
$← {0, 1}κ

3: while true do
4: B ← ctr
5: if H(B) ≤ T then
6: return B
7: end if
8: ctr← ctr + 1
9: end while

10: end function

7


