
Blockchain Foundations
Practice Final 2

2026

1. The exam has 5 questions with a total of 134 points (with 20 bonus points that can
take you up to 154 points). All subproblems of a problems with multiple parts are
equally weighted. You have 3 hours to take the exam, and a 15 minutes grace period
for submissions. Questions have different numbers of points so please allocate your
time to each question accordingly.

2. Please write the answer to each question on a separate page and upload a photo or
scan to Gradescope.

3. All answers should be justified, unless otherwise stated.

4. The exam is open-book, open-notes, open-internet. You may also use artificial intelli-
gence assistance.

5. This exam is an assessment. You agree to abide by the Stanford Honor Code. You must
work on this exam alone, with no collaboration with your fellow students whatsoever.
You may not discuss the exam questions and answers with any other human while
the exam is ongoing and until the deadline for exam submission has elapsed. Any
collaboration with other people, inside or outside the class, is a violation of the honor
code.

Good luck!
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(60 points) Problem 1
For the following questions, choose the one most fitting answer among the four choices. No
justifications are required for this problem. 2 points for a correct answer, 0 points for an
incorrect answer. 0.5 point for leaving the answer blank. Knowing you don’t know something
has value.

1. The blockchain and cryptographic protocols we analyzed in class (hash functions, sig-
natures, bitcoin backbone, etc.) can be broken:

(a) By no adversaries at all.

(b) By a polynomial probabilistic-time adversary, with non-negligible probability.

(c) By a polynomial probabilistic-time adversary, with overwhelming probability.

(d) By an exponential adversary, with probability 1.

2. Consider a second-preimage-resistant hash function H : {0, 1}∗ −→ {0, 1}κ. How many
collisions x1 ̸= x2 such that H(x1) = H(x2) exist?

(a) None.

(b) One.

(c) A polynomial number of collisions.

(d) An infinite number of collisions.

3. Which of the following adversaries would be detrimental to the existential unforgeabil-
ity of a signature scheme?

(a) An adversary who, given a tuple (sk,m, σ) of a secret key, message, and a signa-
ture such that Ver(pk,m, σ), where pk is the respective public key, finds a new
message m′ ̸= m and signature σ′ such that Ver(pk,m′, σ′).

(b) An adversary who, given a tuple (pk,m, σ) of a public key, message, and a signa-
ture such that Ver(pk,m, σ), finds a new message m′ ̸= m and signature σ′ such
that Ver(pk,m′, σ′).

(c) An adversary who, given a tuple (pk,m, σ) of a public key, message, and a signa-
ture such that Ver(pk,m, σ), finds a new signature σ′ ̸= σ such that Ver(pk,m, σ′).

(d) None of the above.

4. For a verifier who knows the index and value of a leaf, what is the size of a proof-of-
inclusion in a binary Merkle tree built using the κ = 256 bit hash function blake2s
with 1024 leaves?

(a) 320 bytes

(b) 2560 bytes

(c) 352 bytes
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(d) 32768 bits

5. What is the relationship between safety and liveness of ledgers?

(a) A safe ledger is always live.

(b) A live ledger is always safe.

(c) A ledger can be both unsafe and unlive.

(d) A ledger is safe if and only if it is live.

6. There exists no PPT adversary controlling 70% of the mining power in a proof-of-work
blockchain who can eventually break:

(a) All parametrizations of Chain Quality, no matter what constant µ > 0 and ℓ ∈ N
we choose.

(b) All parametrizations of Common Prefix, no matter what constant k ∈ N we
choose.

(c) All parametrizations of Chain Growth, no matter what constant τ > 0 and s ∈ N
we choose.

(d) All parametrizations of Liveness, no matter what constant u ∈ N we choose.

7. At the moment of a reorg, transactions in the abandoned chain are:

(a) Discarded.

(b) All placed in the mempool.

(c) Placed in the mempool, as long as they can be applied on top of the new chain.

(d) Placed within the blocks of the newly adopted chain so that they can become
immediately confirmed.

8. Waiting k blocks before confirmation enables us:

(a) To use the Chernoff Bound to bound the probability of failure to negligible.

(b) To use the Law of Large Numbers to bound the probability of failure to zero.

(c) To ensure that the honest parties win, in expectation.

(d) To use the Pigeonhole Principle to ensure that the proof-of-work hash function is
well-behaved.

9. No transactions are occurring on a blockchain network. A rational party will:

(a) Stop mining blocks until more transaction traffic appears.

(b) Keep mining empty blocks to reap the coinbase reward.

(c) Re-include some previously confirmed transactions into new blocks it mines.

(d) Create its own high-fee-paying transactions, and include them, to reward itself.
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10. A protocol designer proposes replacing the proof-of-work inequality H(B) ≤ T with
the inequality H(B) ≥ 2κ − T everywhere.

(a) This is fine.

(b) This will work, but will make the blockchain insecure, as the probability of a
successful query is no longer T

2κ
in the Random Oracle model.

(c) This does not make syntactic sense, as the hash H(B) is always out of the desig-
nated range.

(d) This is fine, but the T parameter must be adjusted accordingly to the value
T ′ = 2κ − T .

11. The Weak Conservation Law in the UTXO model ensures:

(a) That money is never double spent.

(b) That money remains scarce.

(c) That a party only spends money which rightfully belongs to it.

(d) That transactions cannot be reverted.

12. If you increase the mining difficulty 1
T
, then:

(a) You increase liveness, but reduce safety

(b) You increase safety, but reduce liveness

(c) You increase both safety and liveness

(d) You reduce both safety and liveness

13. The Streamlet protocol:

(a) requires a honest supermajority to be safe because the quorum q has to be set at
2n/3.

(b) can relex the honest supermajority safety conditoon but at the expense of de-
creasing the liveness of the protoccol.

(c) can relax the honest supermajority safety condition without decreasing the live-
ness of the protocol.

(d) can relax the honest supermajority safety condition and increase the liveness of
the protocol.

14. An SPV client needs to bootstrap from genesis, and is interested in retrieving all
coinbase transactions in a chain with length |C|, each block of which has α transactions.
It will need communication complexity:

(a) O(|C|+ α)

(b) O(α|C|)
(c) O(|C|+ logα)
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(d) O(|C| logα)

15. A majority adversary in the proof-of-work bitcoin backbone model:

(a) Can break the bounds of the Patience Lemma, because she can break the collision-
resistance property of the hash function and mine arbitrarily quickly.

(b) Can break the bounds of the Patience Lemma, because she can simulate mining
in the future without actually performing any work.

(c) Is bound by the confines of the Patience Lemma, as long as the execution is
typical.

(d) Is bound by the confines of the Patience Lemma, even if the execution fails to be
typical.

16. The accounts-based model, as compared to the UTXO model, has:

(a) A larger k parameter for Common Prefix.

(b) A smaller k parameter for Common Prefix.

(c) The same k parameter for Common Prefix.

(d) The Common Prefix parameter set to k = 1.

17. During peer discovery in a peer-to-peer protocol, the initial set of peers is:

(a) Hard-coded into the code of the node as an array of IP addresses.

(b) Discovered by collecting IP addresses from the issuers of blockchain transactions.

(c) Derived from the public keys in the coinbase transaction issued by the miners.

(d) Requested from the user’s ISP via an HTTPS exchange.

18. Setting the bitcoin backbone parameter ϵ, representing the acceptable Chernoff error,
to 0 would cause:

(a) Liveness to be lost, because the Chernoff interval λ would need to become infinite.

(b) Blocks to be produced very slowly, as the block production rate f must also be
reduced accordingly.

(c) The Common Prefix parameter to become very small, allowing for instant confir-
mation.

(d) None of the above.

19. In the UTXO model, a signature on the transaction ensures:

(a) That the transaction is not a double spend.

(b) That the transaction was issued by an honest party.

(c) That the spending party is the rightful owner of the output spent.
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(d) That the money has been produced correctly according to the macroeconomic
rules of the chain.

20. Consider two independent worlds A and B in which the variable-difficulty proof-of-
work protocol is executed. In world A the adversary plays honestly. In world B, the
adversary is a selfish miner. The worlds are the same (in terms of the parameters n, t,
q, ∆ and so on) otherwise.

(a) World A will tend to have a higher mining target T than world B.

(b) World B will tend to have a higher mining target T than world A.

(c) The two worlds will tend to have the same mining target T , as the total mining
power devoted to the network is the same.

(d) The two worlds will tend to have the same mining target T , because the selfish
mining attack is undetectable.

21. In a well-configured proof-of-work system with n = 10, t = 5, an adversary playing
honestly will cause the long-term chain quality to be:

(a) 0

(b) 1
2

(c) 1
3

(d) 1

22. Imagine a network for which suddenly, but temporarily, ∆ becomes very large because
the underwater Internet cable connecting the Americas to Europe is cut. During that
temporary outage:

(a) The proof-of-work protocol remains safe, but temporarily loses liveness.

(b) The Streamlet protocol remains safe, but temporarily loses liveness.

(c) The longest-chain proof-of-stake protocol remains safe, but temporarily loses live-
ness.

(d) All of the above.

23. Imagine a network for which suddenly, but temporarily, half the parties went offline.
The online parties are all honest. During this period:

(a) The proof-of-work protocol remains safe, but temporarily loses liveness.

(b) The Streamlet protocol remains safe, but temporarily loses liveness.

(c) The longest-chain proof-of-stake protocol remains safe, but temporarily loses live-
ness.

(d) All of the above.

24. The size of the header of a block:
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(a) Is a constant.

(b) Is proportional to the chain size |C|.
(c) Is proportional to the number α of transactions in the block.

(d) Is proportional to the logarithm logα of the number of transactions in the block.

25. A ξ-superblock is a block B that satisfies H(B) ≤ T
2ξ

for some ξ ∈ N. What is the
probability that a given block B is a ξ-superblock, given that it is already a good
block?

(a) 1
2ξ+κ

(b) 1
2ξ

(c) T
2ξ

(d) 1− T
2ξ+κ

26. The proof-of-stake longest chain is not accountable because:

(a) Parties have no identities tied to the proof-of-stake puzzle.

(b) Safety is based on a synchrony assumption.

(c) Adversary parties cannot equivocate in the longest-chain protocol.

(d) All of the above.

27. The proof-of-stake longest chain protocol:

(a) requires a honest supermajority to be safe because adversary can equivocate.

(b) requires a honest supermajority to be live because adversary can equivocate.

(c) None of the above statements is correct.

(d) Both of the above statements are correct.

28. The backbone proof of the common prefix property of the proof-of-work longest chain
protocol cannot be reused for the proof-of-stake longest chain protocol because:

(a) the chain growth lemma doesn’t hold anymore.

(b) the expected number of honest blocks during an execution is not propertional to
the honest stake.

(c) the expected number of adversary blocks during an execution is not proportional
to the adversary stake.

(d) the Chernoff bound cannot be used to bound the number of honest blocks during
an exection.

29. The confirmation latency of a longest chain protocol:

(a) increases when the honest advantage increases.

(b) increases when the security parameter increases.
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(c) increases when the network delay bound increases.

(d) more than one of the above statements is correct.

30. The confirmation latency of Streamlet:

(a) decreases when the honest advantage increases.

(b) decreases when the security parameter increases.

(c) decreases when the network delay bound increases.

(d) more than one of the above statements is correct.
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(16 points) Problem 2
Consider a longest chain blockchain in the UTXO model. The protocol follows a confirmation
rule with k = 1 (a transaction is considered confirmed if it is included in C[:−1]). Consider
the transaction graph in Figure 3. The coinbase reward is 50 units. The amount of each
transaction’s output is denoted as a number above it. Imaginary txids are denoted within
each transaction circle. Note that transaction 7 has two outputs, transaction 10 has one
input, transaction 10 has two outputs, transaction 11 has two inputs, and transaction 8 has
one input.
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Figure 1: The transaction graph for Problem 2.
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Figure 2: The block tree for Problem 2.

Consider the blocktree in Figure 2. In this system, blocks can be completely empty and
coinbase transactions are not mandatory. The block contents are exactly the following:

• The genesis block 0 contains no transactions.

• Block 1 contains transaction 1.

• Block 2 contains transaction 6.
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• Block 3 contains transactions 2, 3.

• Block 4 contains transactions 4, 5.

• Block 5 contains transactions 7, 8.

• Block 4′ contains transaction 7.

• Block 5′ is empty.

• Block 6′ contains transactions 10, 11.

• Block 7′ contains transactions 8, 5.

Our timeline concerns an honest party P and is as follows:
Answer the following questions with regard to the timeline of a full node honest party P :

1. P has adopted the chain [0, 1, 2] and has received transactions 1 and 6 by round
1. Subsequently, during round 1, he receives all transactions in the following order:
2, 3, 4, 5, 7, 8, 9, 10, 11. What is his mempool at the end of round 1?

2. What is his UTXO set (according to the mempool) at the end of round 1?

3. In round 2, he receives blocks 3, 4 and 5. What is his mempool at the end of round 2?

4. What is his UTXO set (according to the mempool) at the end of round 2?

5. In round 3 he receives blocks 4′, 5′, 6′ and 7′. What his chain at the end of round 3?

6. What is his mempool at the end of round 3?

7. What is his UTXO set (according to the mempool) at the end of round 3?

8. What is his ledger at the end of round 3?

Use outpoints to designate the items in your UTXO set. Use a calculator such as Python
and round your numbers to three significant digits.
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(20 points) Problem 3
Consider the safety violation of Streamlet as shown in the figure below (the numbers within
the blocks indicate their epochs). The upper fork has blocks notarized in three epochs 5, 6, 7.
The lower fork has a block from epoch 10 at the same height of the block from epoch 6.

1. Define what it means by the quorum of the Streamlet protocol.

2. Assuming the quorum of Streamlet is set to be 3n/4. Argue that the safety violation
cannot occur if the number of adversary parties is less than t, for the largest possible
t you can provide an argument for.

3. Assuming the quorum of Streamlet is set to be 3n/4. Argue that if the safety violation
occurs, then the number of adversary parties that can be provably found to violate the
protocol has to be at least t, and find the largest possible t.

4. Assuming the quorum of Streamlet is set to be 3n/4. What is the largest number of
adversary parties for which liveness of the protocol can be guaranteed? Explain.

5 6

9

7

10

Figure 3: Safety violation. Upper fork has blocks from epochs 5, 6, 7. Lower fork has block
from epoch 10 at the same height as the block from epoch 6.
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(18 points) Problem 4
In this class we studied three blockchain protocols: (i) proof-of-work longest chain, (ii) proof-
of-stake longest chain, (iii) Streamlet. We have also introduced three protocol properties:
(i) partition tolerance, (ii) dynamic availability, (iii) accountability.

1. Define the three protocol properties in terms of the basic properties of safety and
liveness.

2. Explain which of the three protocols satisfies which properties.

3. Consider all the pairings of the three properties

(a) partition tolerance and dynamic availability,

(b) partition tolerance and accountability,

(c) dynamic availability and accountability.

For each pairing of the properties, argue either why it is impossible to have any protocol
(not only the three we studied) that satisfies both properties, or give an example of a
protocol that simultaneously achieves both properties.
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(20 points) Problem 5
Consider a bitcoin backbone execution with n = 10, t = 2, q = 1000, f = 0.01, and κ = 256.

1. Calculate the honest advantage δ for the given parametrization.

2. Calculate the probability p that a query is successful.

3. Calculate the target T .

4. Use the balancing equation to calculate a reasonable ϵ.

5. Suppose the probability of an execution being typical is 1− 2
−
(

ϵ2λ
3

+κ−327
)
. Setting the

acceptable probability of failure to 2−256, calculate a λ that satisfies this.

6. What is the probability that round 5 is successful?

7. What is the probability that round 5 is a convergence opportunity?

8. What is the probability that round 5 has exactly two adversarial, but no honest,
successful queries?

9. What is a safe k for the confirmation rule?

10. What is a parameter for the velocity τ that guarantees chain growth for intervals at
least s = λ?

Show the formula that you used for each calculation. Use a calculator such as Python
and round your numbers to three significant digits.
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(20 bonus points) Problem 6
Consider a typical Bitcoin Backbone execution correctly parameterized under honest major-
ity in the static proof-of-work model.

1. An honest party P1 broadcasts a new transaction tx1 at round r1 and another hon-
est party P2 broadcasts a new transaction tx2 at round r2 ≥ r1. Both transactions
are included in the same block B, which eventually becomes stable and adopted by
all honest parties. You correctly reason that, since the two transactions were both
confirmed in the same block, they must have been broadcast closely together in time.

Calculate an upper bound d ∈ N for the interval r2 − r1 such that we can rest assured
that r2 − r1 ≤ d. Your bound does not need to be tight, but needs to hold always
for typical executions. Your bound can be a function of all the execution parameters
(ϵ, λ, f, p, T, n, t, k, u, µ, ℓ, s, τ). Prove that your bound holds.

2. An honest party P1 broadcasts a new transaction tx1 at round r and an honest party
P2 broadcasts a new transaction tx2 at the same round r. However, the transactions
make it on different blocks B1 with height h1 and B2 with height h2 > h1 of the same
chain that eventually becomes stable and adopted by all honest parties. You correctly
reason that, since the two transactions were both broadcast at the same time, they
must be included close together on the chain.

Calculate an upper bound d ∈ N for the distance h2−h1 such that we can rest assured
that h2 − h1 ≤ d. Your bound does not need to be tight, but needs to hold always
for typical executions. Your bound can be a function of all the execution parameters
(ϵ, λ, f, p, T, n, t, k, u, µ, ℓ, s, τ). Prove that your bound holds.
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Reference

Variables

• κ: The security parameter

• A: The adversary

• Π: The honest protocol

• G: The genesis block

• ∆: The network delay (in backbone, ∆ = 1)

• H: The hash function

• n: The total number of parties

• t: The adversarial number of parties

• q: In proof-of-work, the hash rate of one party per round; in proof-of-stake, the quorum.

• T : The mining target

• p: Probability of a successful query

• δ: The honest advantage

• k: Common prefix parameter

• µ: Chain quality parameter (the honest ratio of blocks)

• ℓ: Chain quality chunk length (in blocks)

• τ : Chain growth rate (in blocks per round)

• s: Chain growth duration (in rounds)

• f : Probability of successful round

• ϵ: Chernoff bound error

• λ: Chernoff bound duration

• X: Successful round indicator

• Y : Convergence opportunity indicator

• Z: Adversarially successful query indicator
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Formulae

• The honest majority assumption: t < (1− δ)(n− t).

• The balancing inequality: 3f + 3ϵ ≤ δ.

• The proof-of-work inequality: H(B) ≤ T .

• The proof-of-stake inequality: H(s0 ∥ pk ∥ r) ≤ Tp.

Security Definitions

Algorithm 1 The collision resistance game.
1: function CollisionH,A(κ)
2: x1, x2 ← A(1κ)
3: return x1 ̸= x2 ∧Hκ(x1) = Hκ(x2)
4: end function

Definition 1 (Collision Resistant Hash Function). A hash function H : {0, 1}∗ −→ {0, 1}κ
is collision resistant if for any PPT adversary A:

Pr[collisionH,A(κ) = 1] < negl(κ)

Algorithm 2 The preimage resistance game.
1: function PreimageH,A(κ)

2: x
$← {0, 1}2κ

3: y ← Hκ(x)
4: x∗ ← A(y)
5: return Hκ(x

∗) = Hκ(x)
6: end function

Definition 2 (Preimage Resistant Hash Function). A hash function H : {0, 1}∗ −→ {0, 1}κ
is preimage resistant if for any PPT adversary A:

Pr[preimageH,A(κ) = 1] < negl(κ)

Algorithm 3 The second preimage resistance game.
1: function 2nd-PreimageH,A(κ)

2: x
$← {0, 1}2κ

3: x′ ← A(x)
4: return Hκ(x) = Hκ(x

′) ∧ x ̸= x′

5: end function
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Definition 3 (Second Preimage Resistant Hash Function). A hash function H : {0, 1}∗ −→
{0, 1}κ is second preimage resistant if for any PPT adversary A:

Pr[2nd-preimageH,A(κ) = 1] < negl(κ)

Algorithm 4 The existential forgery game for a signature scheme (Gen, Sig, V er).
1: function existential-forgery-gameGen,Sig,V er,A(κ)
2: (pk, sk)← Gen(1κ)
3: M ← ∅
4: function O(m)
5: M ←M ∪ {m}
6: return Sig(sk,m)
7: end function
8: m,σ ← AO(pk)
9: return Ver(pk, σ,m) ∧m ̸∈M

10: end function

Definition 4 (Existentially Unforgeable Signature Scheme). A signature scheme Gen, Sig,Ver
is existentially unforgeable if for any PPT adversary A:

Pr[existential-forgery-gameGen,Sig,Ver,A(κ) = 1] < negl(κ)

Algorithms

Algorithm 5 The Random Oracle
1: r ← 0
2: T ← {} ▷ Initiate Cache
3: Q← 0 ▷ q for honest parties, qt for adversary
4: function Hκ(x)
5: if x ̸∈ T then ▷ First time being queried
6: if Q = 0 then ▷ Out of Queries
7: return ⊥
8: end if
9: Q← Q− 1

10: T [x] $← {0, 1}κ
11: end if
12: return T [x] ▷ Return value from Cache
13: end function
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Algorithm 6 The environment.
1: r ← 0
2: function Zn,t

Π,A(1κ)

3: G $← {0, 1}κ ▷ Genesis block
4: for i← 1 to n− t do ▷ Boot stateful honest parties
5: Pi ← new Π(G)
6: end for
7: A←new A(G, n, t) ▷ Boot stateful adversary
8: M ← [] ▷ 2D array of messages
9: for i← 1 to n− t do

10: M [i]← [] ▷ Each honest party has an array of messages
11: end for
12: while r < poly(κ) do ▷ Number of rounds
13: r ← r + 1
14: M ← ∅
15: for i← 1 to n− t do ▷ Execute honest party i for round r
16: Q← q ▷ Maximum number of oracle queries per honest party (Section 2)
17: M ←M ∪ {Pi.executeH(M [i])} ▷ Adversary collects all messages
18: end for
19: Q← tq ▷ Max number of Adversarial oracle queries
20: M ← A.executeH(M) ▷ Execute rushing adversary for round r
21: for m ∈M do ▷ Ensure all parties will receive message m
22: for i← 1 to n− t do
23: assert(m ∈M [i]) ▷ Non-eclipsing assumption
24: end for
25: end for
26: end while
27: end function
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Algorithm 7 The honest party

1: G ← ϵ
2: function Constructor(G ′)
3: G ← G ′ ▷ Select Genesis Block
4: C ← [G] ▷ Add Genesis Block to start of chain
5: round ← 1
6: end function
7: function Execute(1κ)
8: C̃ ← maxvalid(C, M̄ [i]) ▷ Adopt Longest Chain in the network
9: if C̃ ̸= C then

10: C ← C̃
11: Broadcast(C) ▷ Gossip Protocol
12: end if
13: x← Input() ▷ Take all transactions in mempool
14: B ← PoW(x,H(C[−1]))
15: if B ̸= ⊥ then ▷ Successful Mining
16: C ← C||B ▷ Add block to current longest chain
17: Broadcast(C) ▷ Gossip protocol
18: end if
19: round ← round+1
20: end function
21: function Read
22: x← ϵ ▷ Instantiate transactions
23: for B ∈ C do
24: x← x||B.x ▷ Extract all transactions from each block in the chain
25: end for
26: return x
27: end function
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Algorithm 8 Mining
1: function powH,T,q(x, s)
2: ctr

$← {0, 1}κ ▷ Randomly sample Nonce
3: for i← 1 to q do ▷ Number of available queries per party
4: B ← s||x||ctr ▷ Create block
5: if H(B) ≤ T then ▷ Successful Mining
6: return B
7: end if
8: ctr ← ctr +1
9: end for

10: return ⊥ ▷ Unsuccessful Mining
11: end function

Algorithm 9 The longest chain rule
1: function maxvalidG,δ(·)(C)
2: Cmax ← [G] ▷ Start with current adopted chain
3: for C ∈ C do ▷ Iterate for every chain received through gossip network
4: if validateG,δ(·)(C) ∧ |C| > |Cmax| then ▷ Longest Chain Rule
5: Cmax ← C
6: end if
7: end for
8: return Cmax

9: end function
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Algorithm 10 Chain Validation
1: function validateG,δ(·)(C)
2: if C[0] ̸= G then ▷ Check that first block is Genesis
3: return false
4: end if
5: st ← st0 ▷ Start at Genesis state
6: h← H(C[0])
7: st ← δ∗(st, C[0].x)
8: for B ∈ C[1:] do ▷ Iterate for every block in the chain
9: (s, x, ctr)← B

10: if H(B) > T ∨ s ̸= h then ▷ PoW check and Ancestry check
11: return false
12: end if
13: st ← δ∗(st, B.x) ▷ Application Layer: update UTXO & validate transactions
14: if st = ⊥ then
15: return false ▷ Invalid state transition
16: end if
17: h← H(B)
18: end for
19: return true
20: end function

Chain Virtues

1. Common Prefix (k ∈ N). ∀ honest parties P1, P2 adopting chains C1, C2 at any
rounds r1 ≤ r2 respectively, C1[:−k] ⪯ C2 holds.

2. Chain Quality (µ ∈ [0, 1], ℓ ∈ N). ∀ honest party P with adopted chain C, ∀i any
chunk C[i:i+ ℓ] of length ℓ > 0 has a ratio of honest blocks µ.

3. Chain Growth (τ ∈ R+, s ∈ N). ∀ honest party P , ∀r1, r2 with adopted chain C1 at
round r1 and adopted chain C2 at round r2 ≥ r1 + s, it holds that |C2| ≥ |C1|+ τs.

Ledger Virtues

• Safety: For all honest parties P1, P2, and rounds r1, r2, LP1
r1

is a prefix of LP2
r2

or vice
versa.

• Liveness(u): If all honest parties attempt to inject a transaction tx at rounds r, ..., r+
u, then for all honest parties P , tx will appear in LP

r+u.
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Theorems

Lemma 5 (Patience Lemma). In typical executions, any k ≥ 2λf blocks have been computed
in at least k

2f
rounds.
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